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Potential Molecular Wires by an Iterative Divergent/Convergent
Approach. Doubling of Molecular Length at Each Iteration.

Darmen L. Pearson, Jeffry S. Schumm, LeRoy Jones II, and
James M. Tour*

Department of Chemistry and Biochemistry
University of South Carolina

Columbia, South Carolina 29208

The ultimate computational system would consist of logic
devices that are ultra dense, ultra fast, and molecular-sized.I We recently
described the synthesis of two orthogonally fused conducting oligomers
that may possess device functions. 2 However, before we can address the
device-like properties, there is a more fundamental question; namely,
can a single organic molecule even conduct electricity? 3 Though bulk
organic materials can indeed be semiconducting or even conducting,4

electronic conduction based upon single or small packets of molecules
has not been demonstrated and it is theoretically controversial. 1 ,-5
Present nanopatteming techniques allow lithographic probe assemblies
to be engneered down to the 100 A gap regime. In an attempt to span
this 100 A gap with molecules and to assess the feasibility of molecular
wire conduction, we describe here a new rapid synthetic approach to
potential molecular wires based on oligo(thiophene-ethynylene) and
oligo(phenylene-ethynylene) derivatives.

Others have constructed well-defined homogeneous conjugated
oligomers up to 75 A long.3 Our approach to such compounds is
different in that it maintains several key features that make it well-suited
for the requisite molecular frameworks for molecular electronics study.
Specifically, our route involves (1) a novel rapid construction method
that permits doubling molecular length at each coupling stage to rapidly
afford a 100 A and 128 A oligomer, (2) an iterative approach so that the
same high yielding reactions can be used throughout the sequence, (3)
the synthesis of conjugated compounds that are known to be
semiconducting in the bulk,7 (4) products that are stable to light and air
so that subsequent engineering manipulations will not be impeded, (5)
products that could easily permit independent functionalization of the
ends to serve as "molecular alligator clips" that might be required for
surface contacts to metal probes (for example, an end group containing a
thiol would bond to a gold surface) 8 (6) products that are rigid in their
frameworks so as to minimize conformational flexibility yet containing
substituents for maintaining solubility and processability, and finally, (7)
products that serve as useful models for the understanding of bulk
polymeric materials.9

The synthesis of the key monomer 4, whose length will double at
each stage, is below. 10 The iterative divergent/convergent
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synthetic approach is outlined in Scheme I. The sequence involves
partitioning 4 into two portions; iodinating the 5-position in one of the
portions to form 5 and protodesilylating the alkynyl end of the second
portion to form 6. Bringing the two portions back together in the
presence of a Pd/Cu catalystluc-f couples the aryl iodide to the terminal
alkyne, thus generating the dimer 7. Iteration of this reaction sequence
doubles the length of the dimer 7 to afford the tetramer 10, and so on to
the octamer 13, and finally the 16-mer 16.

The monomer through 16-mer, 4, 7, 10, 13, and 16, have been
fully characterized. In every case, they are of Z97% purity. While the
monomer through octamer afforded molecular ions by direct exposure
via electron impact mass spectrometry (MS), neither this method nor
FAB or electrospray MS sufficed for obtaining a molecular ion of 16.
However, matrix assisted laser desorption MS did afford an M+1 peak
for 16 [Calc'd M (isotopic maximum with two 13C) + 1= 2221.37.
Found peak maximum = 2219.98 ±1.201.

The optical spectra are interesting in that a near saturation of the
systems appears to have occurred by the octamer stage so that doubling
the conjugation length to the 16-mer caused little change in the
absorbance maximum. The results of the size exclusion chromatography
(SEC) are also quite intriguing. SEC is not a direct measure of
molecular weight but a measure of the hydrodynamic volume. Thus, by
SEC using randomly coiled polystyrene standards, the number average
molecular weights (Mn) of rigid rod polymers are usually greatly
inflated relative the the actual molecular weights (MW). Accordingly,
the SEC recorded Mn values of the octamer (13) (Mn = 1610, actual
MW= 1146) and 16-mer (16) (Mn = 3960, actual MW= 2220) were
much greater than the actual MWs. Conversely, the monomer (4)
through tetramer (10) had Mn values that were very close to the actual
because they are in the low MW region, prior to significant polystyrene
coiling. In all cases, the SEC-determined values of Mw/Mn = 1.02-1.05
were within the detectable range limits.

We have recently synthesized an analogous oligo(phenylene-
ethynylene) (17) by a similar route.



Iterative Divergent/
EtwN ~ / CEC-Si~e Convergent Approach

Et2N3 tC _.c=jSiMe 3
1l6

17

I~i - 128 A - ,'

We have also synthesized a series of end groups (18-21) that will
serve as molecular alligator clips. These end groups, upon
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demethylation to the free thiols, will attach the ends of the molecules
between the gold-coated probe surfaces as shown on Figure I.
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In summary, we have demonstrated the utility of this iterative
divergent/convergent approach to the synthesis of very large molecular
frameworks. We are presently synthesizing near-sp -orbital matched
arrays involving oligo(thiophene-ethenylene)s and oligo(phenylene-
ethenylenc)s.
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